
Deep Dive: Collecting, analyzing and

understanding Windows performance counters

E2EVC 2023, Rome

Benny Tritsch | info@drtritsch.com | @drtritsch

info@drtritsch.com

@drtritsch

Performance Data Scientist

EUC Documentary Cameraman

MVP | CTP | vExpert EUC

NGCA | VIPP

mailto:info@drtritsch.com

Task Manager versus Performance Monitor

Windows 10 Task Manager ‘% CPU’ skew – A Tale of Two Metrics by Jeff Stokes
https://illuminati.services/2021/03/17/windows-10-task-manager-cpu-inaccurate-a-tale-of-two-metrics/

Task Manager’s CPU numbers are all but meaningless by Aaron Margosis
https://aaron-margosis.medium.com/task-managers-cpu-numbers-are-all-but-meaningless-2d165b421e43

https://illuminati.services/2021/03/17/windows-10-task-manager-cpu-inaccurate-a-tale-of-two-metrics/
https://aaron-margosis.medium.com/task-managers-cpu-numbers-are-all-but-meaningless-2d165b421e43

Consistent interface for collecting various kinds of system data

• A provider is a software component that generates and publishes

performance data

• A counterset (or object) is a grouping of performance data within

a provider

• A counter is the definition of single piece of performance data

• An instance is an entity about which performance data is reported

• A counter value is the value of a single piece of performance

counter data

• The counter type indicates the type of the counter's raw value

and indicates what the counter's raw value represents

Windows Performance Counters

• Single-instance countersets always contain data for exactly one

instance

• Multi-instance countersets contain data for a variable number of

instances

• A consumer is a software component that makes use of

performance data. It periodically collects and records the data

from a provider's counterset:

– GUI: Task Manager, Resource Monitor, Performance Monitor, and

Sysinternals Process Explorer

– CMD: Typeperf.exe, Logman.exe, and Relog.exe

– EUC Score: Simload Base Counters, Telemetry Collector, Data Miner

Windows Performance Counters

Performance API Architecture

Deprecated

https://learn.microsoft.com/en-us/windows/win32/perfctrs/about-performance-counters

Windows Performance Data Helper DLL – PDH.dll

• This key provides runtime information into performance data

provided by either the NT kernel itself, or running system drivers,

programs and services that provide performance data

• This key is not stored in any hive and not displayed in the

Registry Editor, but it is visible through the registry functions in

the Windows API, or in a simplified view via the Performance tab

of the Task Manager

• For details about the API, check out

https://learn.microsoft.com/en-us/windows/win32/api/pdh/

HKEY_PERFORMANCE_DATA & PDH API

https://learn.microsoft.com/en-us/windows/win32/api/pdh/

Task Manager – Performance Tab

Task Manager – Detail Tab

Resource Monitor

Performance Monitor

Sysinternals Process Explorer

• Typeperf writes performance data to the command window or to

a log file

• Logman creates and manages Event Trace Session and

Performance logs and supports many functions of Performance

Monitor from the command line

• Relog extracts performance counters from performance counter

logs into other formats, such as text-TSV (for tab-delimited text),

text-CSV (for comma-delimited text), binary-BIN (BLG), or SQL

Command-Line Consumers

• CtrPP is a command-line build tool from the Windows SDK that

validates and compiles a Performance Counters V2 provider

manifest. This tool generates the .h headers and .rc resource

scripts needed to build a V2 provider

• LodCtr is the command-line tool used to install a provider onto a

system

• UnlodCtr is the command-line tool used to uninstall a provider

from a system

Performance Data Provider Tools

PerfMon: Add Counters and Save Settings

Some Important EUC Counters

Counter Instance Object

Available MBytes Memory

Free System Page Table Entries Memory

Page Faults/sec Memory

Pages/sec Memory

Pool Nonpaged Bytes Memory

Pool Paged Bytes Memory

Bytes Total/sec * Network Adapter

Avg. Disk Queue Length _Total PhysicalDisk

Working Set _Total Process

% Processor Time _Total Processor

% Interrupt Time _Total Processor

Interrupts/sec _Total Processor

Context Switches/sec System

Processes System

Processor Queue Length System

Active Sessions Terminal Services

[A range of counters] * RemoteFX Network

[A range of counters] * RemoteFX Graphics

Max Input Delay Max User Input Delay per Session

Performance Counter Path Syntax

Processor _Total % Processor Time"\ ()\ "

Object

= Counterset
Counter

Instance

\\ComputerName\ObjectName(ObjectInstance)\ObjectCounter

IMPORTANT: Believe it or not, but counter names are localized,

so above example works only on English systems!

• Provides application programmers the ability to generate alert notifications

based on performance counter thresholds

– Create new Data Collector Set

– Create manually (Advanced)

– Create data logs - performance counter, event trace data, system configuration

information

• In Performance Monitor

– Add performance counters and sample interval

– Go to existing data collector set and change log format to create CSV files in the PerfLog

folder

– In case Binary format was selected, the BLG file can be converted to CSV by the relog

command located in WINDOWS\System32

• relog -f csv "C:\location\blg\file.blg" -o "C:\location\output\file.csv"

Performance Logs and Alerts (PLA)

• The Logman command can start and stop a PerfMon Data Collector Set

– Logman start "EUC Score"

– Logman stop "EUC Score"

• Logman query shows all scheduled tasks created by Performance Monitor

• Logman import "EUC Score" -xml c:\windows\perf_log.xml

• In Data Collector Set properties, use Stop Conditions and Schedule to trigger
by Task Scheduler. In Task Scheduler, the scheduled task is visible under the
"Task Scheduler Library" > "Microsoft" > "Windows" > "PLA" folder.

• HINT: In case Task Scheduler is not running, start it with "net start task
scheduler"

• HINT: Schtasks.exe enables an administrator to create, delete, query,
change, run and end scheduled tasks on a local or remote system.

PerfMon Data Collector Sets

• WMI has preinstalled providers that monitor system performance

on both the local system and remotely

• WMI can be used from scripts or from C/C++ applications

• The WmiPerfClass provider creates the classes derived from

Win32_PerfRawData and from Win32_PerfFormattedData

• The WmiPerfInst provider supplies data dynamically to both raw

and formatted classes

• Example: Get-CimInstance -Query "select Name, PercentProcessorTime from

Win32_PerfFormattedData_PerfOS_Processor" | Select Name, PercentProcessorTime

Windows Management Interface

CAUTION: WMI overhead can be significant!

Performance Counters

• Get-Counter -ListSet "Processor"

• (Get-Counter -ListSet "Processor").Paths

• (Get-Counter -ListSet "Processor").PathsWithInstances

• Get-Counter -Counter "\Processor(_Total)\% Processor Time" -

SampleInterval 2 -MaxSamples 3

PowerShell

• The most severe limitation of Get-Counter are the localized

counter names

• There are two API functions you can use to convert localized

counter names to id numbers and vice versa

– Get-PerformanceCounterId takes a localized performance counter name

and translates it to a language-agnostic id number

– Get-PerformanceCounterLocalName does the opposite and translates the

id number to the appropriate local name

Dealing With Localized Counter Names

https://powershell.one/tricks/performance/performance-counters

https://powershell.one/tricks/performance/performance-counters

For example, ControlUp Management Console visualizing performance

data collected by the ControlUp Real-Time Agent (a consumer)

3rd Party Monitoring Solutions

EUC Score Telemetry Collectors

[Telemetry]

Name1=CPU|%

Counter1=\Processor(_Total)\% Processor Time

Name2=CPU Queue Length

Counter2=\System\Processor Queue Length

Name3=Memory Available|MBytes

Counter3=\Memory\Available MBytes

Name4=Working Set|Bytes

Counter4=\Process(_Total)\Working Set

Name5=Disk Reads|Bytes/sec

Counter5=\PhysicalDisk(_Total)\Disk Read Bytes/sec

Name6=Disk Writes|Bytes/sec

Counter6=\PhysicalDisk(_Total)\Disk Write Bytes/sec

Name7=Disk IOPS

Counter7=\PhysicalDisk(_Total)\Disk Transfers/sec

Name8=Disk Avg. Queue Length

Counter8=\PhysicalDisk(_Total)\Avg. Disk Queue Length

Name9=Context Switches/sec

Counter9=\System\Context Switches/sec

Name10=Processes

Counter10=\System\Processes

Simload Base Counters – Simloads.ini

AutoIt Code Base

Only single-instance counters

AutoIt – _PDH_PerformanceCounters

https://learn.microsoft.com/en-us/windows/win32/api/pdh/nf-pdh-pdhexpandwildcardpathw

TimeStamp|1000,CPU|%,CPU Queue Length,Available Memory|MB,Working Set|Bytes,Disk|Writes/sec,Disk|Reads/sec,IOPS,Disk Queue
Length,Context Switches,Processes

2023.10.29 22:13:34.192,10,0,5993,13830582272,7,8,16,0,15232,367

2023.10.29 22:13:35.197,9,0,5995,13776322560,41,1,43,0,15390,364

2023.10.29 22:13:36.187,8,0,6013,13709582336,43,2,45,0,20534,362

2023.10.29 22:13:37.192,10,0,6008,13709668352,32,0,33,0,13920,362

2023.10.29 22:13:38.181,9,0,6019,13700558848,33,1,34,0,13950,362

2023.10.29 22:13:39.185,8,0,6017,13701595136,33,0,34,0,15660,362

2023.10.29 22:13:40.190,11,0,6019,13704974336,80,1,82,0,17593,362

2023.10.29 22:13:41.194,10,0,6064,13619404800,46,0,47,0,13589,361

2023.10.29 22:13:42.198,10,0,6063,13616513024,112,1,114,0,12734,361

2023.10.29 22:13:43.203,9,0,6067,13614186496,21,0,21,0,13642,361

2023.10.29 22:13:44.208,10,0,6066,13613527040,28,4,33,0,12419,361

2023.10.29 22:13:45.198,9,0,6068,13613506560,29,2,31,0,12968,361

2023.10.29 22:13:46.188,8,0,6067,13612544000,22,1,23,0,13148,361

2023.10.29 22:13:47.193,10,0,6069,13612376064,27,0,28,0,14813,361

2023.10.29 22:13:48.197,10,0,6070,13613633536,26,0,27,0,14568,361

2023.10.29 22:13:49.202,9,0,6069,13613637632,24,0,25,0,12665,361

2023.10.29 22:13:50.192,11,1,6068,13614481408,10,1,11,0,24493,361

2023.10.29 22:13:51.182,11,0,6071,13613842432,42,3,45,0,19295,361

2023.10.29 22:13:52.187,6,0,6069,13614387200,38,1,40,0,20770,361

2023.10.29 22:13:53.177,10,0,6068,13615935488,31,1,32,0,17654,361

2023.10.29 22:13:54.169,8,0,6068,13617676288,22,33,55,0,15473,361

CSV Result Files

<?xml version="1.0" encoding="utf-8" ?>

<TelemetryDataConfig>

 <RefreshRate>1000</RefreshRate>

 <CounterDefinitions>

 <!-- Standard Counters -->

 <Counter Name="CPU" Unit="%">

 <CategoryName>Processor</CategoryName>

 <CounterName>% Processor Time</CounterName>

 <InstanceName>_Total</InstanceName>

 </Counter>

 <Counter Name="CPU Queue Length">

 <CategoryName>System</CategoryName>

 <CounterName>Processor Queue Length</CounterName>

 </Counter>

 <Counter Name="Memory Available" Unit="MBytes">

 <CategoryName>Memory</CategoryName>

 <CounterName>Available Mbytes</CounterName>

 </Counter>

</CounterDefinitions>

</TelemetryDataConfig>

Telemetry Collector – TelemetryDataConfig.xml

C++ Code Base

Single-instance counters

plus additional metrics

TC-specific Metrics

<Counter Name="Network Received" Unit="KBytes/sec">

 <CategoryName>TC::network received</CategoryName>

 <InstanceName>_Total</InstanceName>

</Counter>

<Counter Name="Network Sent" Unit="KBytes/sec">

 <CategoryName>TC::network sent</CategoryName>

 <InstanceName>_Total</InstanceName>

</Counter>

<Counter Name="GPU 3D" Unit="%">

 <CategoryName>TC::GPU load</CategoryName>

 <CounterName>3D</CounterName>

 <InstanceName>_Total</InstanceName>

</Counter>

<Counter Name="GPU Video Decode" Unit="%">

 <CategoryName>TC::GPU load</CategoryName>

 <CounterName>Video Decode</CounterName>

 <InstanceName>_Total</InstanceName>

</Counter>

<Counter Name="GPU Video Processing" Unit="%">

 <CategoryName>TC::GPU load</CategoryName>

 <CounterName>Video Processing</CounterName>

 <InstanceName>_Total</InstanceName>

</Counter>

<Counter Name="GPU Memory" Unit="MBytes">

 <CategoryName>TC::GPU frame buffer</CategoryName>

 <InstanceName>_Total</InstanceName>

</Counter>

<Counter Name="Session CPU" Unit="%">

 <CategoryName>Terminal Services Session</CategoryName>

 <CounterName>% Processor Time</CounterName>

 <InstanceName>TC::current RDP session</InstanceName>

</Counter>

What’s Next (Part 1)

EUC Score Data Miner

• Stand-alone performance counter

consumer

• Configurable by INI file

• CSV output file

• 1 second sample intervals

• Pre-launch countdown

• EUC Score Avatar or EUC Score Windows Service reverse

connect to an EUC Score Controller

• The EUC Score Controller can send PowerShell commands to

launch Simloads or to collect performance data

What’s Next (Part 2)

System Under Test Controller

Remote Commands

Reverse Connect

Avatar or

Windows

Service

Perf Counters look scary at night…

…not so much when viewed under light

Call to Action

If you want to learn more about

EUC Score, send me an email

info@eucscore.com

https://eucscore.com

NOTE: The EUC Score toolset is free for

community benchmarking tests when the

results are made publicly available

https://eucscore.com/

Thank You

Benny Tritsch | info@eucscore.com | @drtritsch

	Slide 1: Deep Dive: Collecting, analyzing and understanding Windows performance counters E2EVC 2023, Rome
	Slide 2
	Slide 3: Task Manager versus Performance Monitor
	Slide 4: Windows Performance Counters
	Slide 5: Windows Performance Counters
	Slide 6: Performance API Architecture
	Slide 7: Windows Performance Data Helper DLL – PDH.dll
	Slide 8: HKEY_PERFORMANCE_DATA & PDH API
	Slide 9: Task Manager – Performance Tab
	Slide 10: Task Manager – Detail Tab
	Slide 11: Resource Monitor
	Slide 12: Performance Monitor
	Slide 13: Sysinternals Process Explorer
	Slide 14: Command-Line Consumers
	Slide 15: Performance Data Provider Tools
	Slide 16: PerfMon: Add Counters and Save Settings
	Slide 17: Some Important EUC Counters
	Slide 18: Performance Counter Path Syntax
	Slide 19: Performance Logs and Alerts (PLA)
	Slide 20: PerfMon Data Collector Sets
	Slide 21: Windows Management Interface
	Slide 22: PowerShell
	Slide 23: Dealing With Localized Counter Names
	Slide 24: 3rd Party Monitoring Solutions
	Slide 25: EUC Score Telemetry Collectors
	Slide 26: Simload Base Counters – Simloads.ini
	Slide 27: AutoIt – _PDH_PerformanceCounters
	Slide 28: CSV Result Files
	Slide 29: Telemetry Collector – TelemetryDataConfig.xml
	Slide 30: TC-specific Metrics
	Slide 31: What’s Next (Part 1)
	Slide 32: What’s Next (Part 2)
	Slide 33
	Slide 34
	Slide 35: Call to Action
	Slide 36: Thank You

